niedziela, 13 stycznia 2013

Wielkie układy równań liniowych

Wielkie układy równań liniowych

Wraz z coraz większymi modelami pojawiającymi się w praktyce obliczeniowej, coraz częściej zachodzi potrzeba rozwiązywania zadań algebry liniowej, w której macierze są co prawda wielkiego wymiaru, ale najczęściej rozrzedzone, to znaczy jest w nich bardzo dużo zer. Bardzo często zdarza się, że macierz wymiaru N ma tylko O(N) niezerowych elementów. Wykorzytanie tej specyficznej własności macierzy nie tylko prowadzi do algorytmów istotnie szybszych od ich analogów dla macierzy gęstych (to znaczy takich, które (w założeniu) mają N^2 elementów), ale wręcz są jedynym sposobem na to, by niektóre zadania w ogóle stały się rozwiązywalne przy obecnym stanie techniki obliczeniowej!

Jednym ze szczególnie ważnych źródeł układów równań z macierzami rozrzedzonymi są np. równania różniczkowe cząstkowe (a więc np. modele pogody, naprężeń w konstrukcji samochodu, przenikania kosmetyków do głębszych warstw skóry, itp.).

Modele wielostanowych systemów kolejkowych (np. routera obsługującego wiele komputerów) także prowadzą do gigantycznych układów równań z macierzami rozrzedzonymi o specyficznej strukturze.

Z reguły zadania liniowe wielkiego wymiaru będą miały strukturę macierzy rozrzedzonej, gdyż najczęściej związki pomiędzy niewiadomymi w równaniu nie dotyczą wszystkich, tylko wybranej grupy.

Przykład: Macierz z kolekcji Boeinga

Spójrzmy na macierz sztywności dla modelu silnika lotniczego, wygenerowaną swego czasu w zakładach Boeinga i pochodzącą z dyskretyzacji pewnego równania różniczkowego cząstkowego. Pochodzi z kolekcji Tima Davisa. Jest to mała macierz, wymiaru 8032 (w kolekcji spotkasz równania z milionem i więcej niewiadomych).

Brak komentarzy:

Prześlij komentarz